Code
cookbook/agent_concepts/memory/mongodb_memory.py
Copy
Ask AI
"""
This example shows how to use the Memory class with MongoDB storage.
"""
import asyncio
import os
from agno.agent.agent import Agent
from agno.memory.v2.db.mongodb import MongoMemoryDb
from agno.memory.v2.memory import Memory
from agno.models.openai.chat import OpenAIChat
# Get MongoDB connection string from environment
# Format: mongodb://username:password@localhost:27017/
mongo_url = "mongodb://localhost:27017/"
database_name = "agno_memory"
# Create MongoDB memory database
memory_db = MongoMemoryDb(
connection_string=mongo_url,
database_name=database_name,
collection_name="memories" # Collection name to use in the database
)
# Create memory instance with MongoDB backend
memory = Memory(db=memory_db)
# This will create the collection if it doesn't exist
memory.clear()
# Create agent with memory
agent = Agent(
model=OpenAIChat(id="gpt-4o"),
memory=memory,
enable_user_memories=True,
)
async def run_example():
# Use the agent with MongoDB-backed memory
await agent.aprint_response(
"My name is Jane Smith and I enjoy painting and photography.",
user_id="jane@example.com",
)
await agent.aprint_response(
"What are my creative interests?",
user_id="jane@example.com",
)
# Display the memories stored in MongoDB
memories = memory.get_user_memories(user_id="jane@example.com")
print("Memories stored in MongoDB:")
for i, m in enumerate(memories):
print(f"{i}: {m.memory}")
if __name__ == "__main__":
asyncio.run(run_example())
Usage
1
Create a virtual environment
Open the
Terminal
and create a python virtual environment.Copy
Ask AI
python3 -m venv .venv
source .venv/bin/activate
2
Set environment variables
Copy
Ask AI
export OPENAI_API_KEY=xxx
3
Install libraries
Copy
Ask AI
pip install -U agno openai pymongo
4
Run Example
Copy
Ask AI
python cookbook/agent_concepts/memory/mongodb_memory.py