from agno.agent import Agentfrom agno.knowledge.pdf_url import PDFUrlKnowledgeBasefrom agno.vectordb.lancedb import LanceDbvector_db = LanceDb( table_name="recipes", uri="/tmp/lancedb", # You can change this path to store data elsewhere)knowledge_base = PDFUrlKnowledgeBase( urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"], vector_db=vector_db,)knowledge_base.load(recreate=False) # Comment out after first runagent = Agent(knowledge=knowledge_base, show_tool_calls=True)agent.print_response("How to make Tom Kha Gai", markdown=True)
from agno.agent import Agentfrom agno.knowledge.pdf_url import PDFUrlKnowledgeBasefrom agno.vectordb.lancedb import LanceDbvector_db = LanceDb( table_name="recipes", uri="/tmp/lancedb", # You can change this path to store data elsewhere)knowledge_base = PDFUrlKnowledgeBase( urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"], vector_db=vector_db,)knowledge_base.load(recreate=False) # Comment out after first runagent = Agent(knowledge=knowledge_base, show_tool_calls=True)agent.print_response("How to make Tom Kha Gai", markdown=True)