import json
from textwrap import dedent
from typing import Dict, Iterator, Optional
from agno.agent import Agent
from agno.models.openai import OpenAIChat
from agno.storage.sqlite import SqliteStorage
from agno.tools.duckduckgo import DuckDuckGoTools
from agno.tools.newspaper4k import Newspaper4kTools
from agno.utils.log import logger
from agno.utils.pprint import pprint_run_response
from agno.workflow import RunEvent, RunResponse, Workflow
from pydantic import BaseModel, Field
class NewsArticle(BaseModel):
title: str = Field(..., description="Title of the article.")
url: str = Field(..., description="Link to the article.")
summary: Optional[str] = Field(
..., description="Summary of the article if available."
)
class SearchResults(BaseModel):
articles: list[NewsArticle]
class ScrapedArticle(BaseModel):
title: str = Field(..., description="Title of the article.")
url: str = Field(..., description="Link to the article.")
summary: Optional[str] = Field(
..., description="Summary of the article if available."
)
content: Optional[str] = Field(
...,
description="Full article content in markdown format. None if content is unavailable.",
)
class BlogPostGenerator(Workflow):
"""Advanced workflow for generating professional blog posts with proper research and citations."""
description: str = dedent("""\
An intelligent blog post generator that creates engaging, well-researched content.
This workflow orchestrates multiple AI agents to research, analyze, and craft
compelling blog posts that combine journalistic rigor with engaging storytelling.
The system excels at creating content that is both informative and optimized for
digital consumption.
""")
searcher: Agent = Agent(
model=OpenAIChat(id="gpt-4o-mini"),
tools=[DuckDuckGoTools()],
description=dedent("""\
You are BlogResearch-X, an elite research assistant specializing in discovering
high-quality sources for compelling blog content. Your expertise includes:
- Finding authoritative and trending sources
- Evaluating content credibility and relevance
- Identifying diverse perspectives and expert opinions
- Discovering unique angles and insights
- Ensuring comprehensive topic coverage\
"""),
instructions=dedent("""\
1. Search Strategy 🔍
- Find 10-15 relevant sources and select the 5-7 best ones
- Prioritize recent, authoritative content
- Look for unique angles and expert insights
2. Source Evaluation 📊
- Verify source credibility and expertise
- Check publication dates for timeliness
- Assess content depth and uniqueness
3. Diversity of Perspectives 🌐
- Include different viewpoints
- Gather both mainstream and expert opinions
- Find supporting data and statistics\
"""),
response_model=SearchResults,
)
article_scraper: Agent = Agent(
model=OpenAIChat(id="gpt-4o-mini"),
tools=[Newspaper4kTools()],
description=dedent("""\
You are ContentBot-X, a specialist in extracting and processing digital content
for blog creation. Your expertise includes:
- Efficient content extraction
- Smart formatting and structuring
- Key information identification
- Quote and statistic preservation
- Maintaining source attribution\
"""),
instructions=dedent("""\
1. Content Extraction 📑
- Extract content from the article
- Preserve important quotes and statistics
- Maintain proper attribution
- Handle paywalls gracefully
2. Content Processing 🔄
- Format text in clean markdown
- Preserve key information
- Structure content logically
3. Quality Control ✅
- Verify content relevance
- Ensure accurate extraction
- Maintain readability\
"""),
response_model=ScrapedArticle,
structured_outputs=True,
)
writer: Agent = Agent(
model=OpenAIChat(id="gpt-4o"),
description=dedent("""\
You are BlogMaster-X, an elite content creator combining journalistic excellence
with digital marketing expertise. Your strengths include:
- Crafting viral-worthy headlines
- Writing engaging introductions
- Structuring content for digital consumption
- Incorporating research seamlessly
- Optimizing for SEO while maintaining quality
- Creating shareable conclusions\
"""),
instructions=dedent("""\
1. Content Strategy 📝
- Craft attention-grabbing headlines
- Write compelling introductions
- Structure content for engagement
- Include relevant subheadings
2. Writing Excellence ✍️
- Balance expertise with accessibility
- Use clear, engaging language
- Include relevant examples
- Incorporate statistics naturally
3. Source Integration 🔍
- Cite sources properly
- Include expert quotes
- Maintain factual accuracy
4. Digital Optimization 💻
- Structure for scanability
- Include shareable takeaways
- Optimize for SEO
- Add engaging subheadings\
"""),
expected_output=dedent("""\
{Engaging hook and context}
{Key insights and analysis}
{Expert quotes and statistics}
{Deeper exploration}
{Real-world examples}
{Actionable insights}
{Expert recommendations}
- {Shareable insight 1}
- {Practical takeaway 2}
- {Notable finding 3}
{Properly attributed sources with links}\
"""),
markdown=True,
)
def run(
self,
topic: str,
use_search_cache: bool = True,
use_scrape_cache: bool = True,
use_cached_report: bool = True,
) -> Iterator[RunResponse]:
logger.info(f"Generating a blog post on: {topic}")
if use_cached_report:
cached_blog_post = self.get_cached_blog_post(topic)
if cached_blog_post:
yield RunResponse(
content=cached_blog_post, event=RunEvent.workflow_completed
)
return
search_results: Optional[SearchResults] = self.get_search_results(
topic, use_search_cache
)
if search_results is None or len(search_results.articles) == 0:
yield RunResponse(
event=RunEvent.workflow_completed,
content=f"Sorry, could not find any articles on the topic: {topic}",
)
return
scraped_articles: Dict[str, ScrapedArticle] = self.scrape_articles(
topic, search_results, use_scrape_cache
)
writer_input = {
"topic": topic,
"articles": [v.model_dump() for v in scraped_articles.values()],
}
yield from self.writer.run(json.dumps(writer_input, indent=4), stream=True)
self.add_blog_post_to_cache(topic, self.writer.run_response.content)
def get_cached_blog_post(self, topic: str) -> Optional[str]:
logger.info("Checking if cached blog post exists")
return self.session_state.get("blog_posts", {}).get(topic)
def add_blog_post_to_cache(self, topic: str, blog_post: str):
logger.info(f"Saving blog post for topic: {topic}")
self.session_state.setdefault("blog_posts", {})
self.session_state["blog_posts"][topic] = blog_post
def get_cached_search_results(self, topic: str) -> Optional[SearchResults]:
logger.info("Checking if cached search results exist")
search_results = self.session_state.get("search_results", {}).get(topic)
return (
SearchResults.model_validate(search_results)
if search_results and isinstance(search_results, dict)
else search_results
)
def add_search_results_to_cache(self, topic: str, search_results: SearchResults):
logger.info(f"Saving search results for topic: {topic}")
self.session_state.setdefault("search_results", {})
self.session_state["search_results"][topic] = search_results
def get_cached_scraped_articles(
self, topic: str
) -> Optional[Dict[str, ScrapedArticle]]:
logger.info("Checking if cached scraped articles exist")
scraped_articles = self.session_state.get("scraped_articles", {}).get(topic)
return (
ScrapedArticle.model_validate(scraped_articles)
if scraped_articles and isinstance(scraped_articles, dict)
else scraped_articles
)
def add_scraped_articles_to_cache(
self, topic: str, scraped_articles: Dict[str, ScrapedArticle]
):
logger.info(f"Saving scraped articles for topic: {topic}")
self.session_state.setdefault("scraped_articles", {})
self.session_state["scraped_articles"][topic] = scraped_articles
def get_search_results(
self, topic: str, use_search_cache: bool, num_attempts: int = 3
) -> Optional[SearchResults]:
if use_search_cache:
try:
search_results_from_cache = self.get_cached_search_results(topic)
if search_results_from_cache is not None:
search_results = SearchResults.model_validate(
search_results_from_cache
)
logger.info(
f"Found {len(search_results.articles)} articles in cache."
)
return search_results
except Exception as e:
logger.warning(f"Could not read search results from cache: {e}")
for attempt in range(num_attempts):
try:
searcher_response: RunResponse = self.searcher.run(topic)
if (
searcher_response is not None
and searcher_response.content is not None
and isinstance(searcher_response.content, SearchResults)
):
article_count = len(searcher_response.content.articles)
logger.info(
f"Found {article_count} articles on attempt {attempt + 1}"
)
self.add_search_results_to_cache(topic, searcher_response.content)
return searcher_response.content
else:
logger.warning(
f"Attempt {attempt + 1}/{num_attempts} failed: Invalid response type"
)
except Exception as e:
logger.warning(f"Attempt {attempt + 1}/{num_attempts} failed: {str(e)}")
logger.error(f"Failed to get search results after {num_attempts} attempts")
return None
def scrape_articles(
self, topic: str, search_results: SearchResults, use_scrape_cache: bool
) -> Dict[str, ScrapedArticle]:
scraped_articles: Dict[str, ScrapedArticle] = {}
if use_scrape_cache:
try:
scraped_articles_from_cache = self.get_cached_scraped_articles(topic)
if scraped_articles_from_cache is not None:
scraped_articles = scraped_articles_from_cache
logger.info(
f"Found {len(scraped_articles)} scraped articles in cache."
)
return scraped_articles
except Exception as e:
logger.warning(f"Could not read scraped articles from cache: {e}")
for article in search_results.articles:
if article.url in scraped_articles:
logger.info(f"Found scraped article in cache: {article.url}")
continue
article_scraper_response: RunResponse = self.article_scraper.run(
article.url
)
if (
article_scraper_response is not None
and article_scraper_response.content is not None
and isinstance(article_scraper_response.content, ScrapedArticle)
):
scraped_articles[article_scraper_response.content.url] = (
article_scraper_response.content
)
logger.info(f"Scraped article: {article_scraper_response.content.url}")
self.add_scraped_articles_to_cache(topic, scraped_articles)
return scraped_articles
if __name__ == "__main__":
import random
from rich.prompt import Prompt
example_prompts = [
"Why Cats Secretly Run the Internet",
"The Science Behind Why Pizza Tastes Better at 2 AM",
"Time Travelers' Guide to Modern Social Media",
"How Rubber Ducks Revolutionized Software Development",
"The Secret Society of Office Plants: A Survival Guide",
"Why Dogs Think We're Bad at Smelling Things",
"The Underground Economy of Coffee Shop WiFi Passwords",
"A Historical Analysis of Dad Jokes Through the Ages",
]
topic = Prompt.ask(
"[bold]Enter a blog post topic[/bold] (or press Enter for a random example)\n✨",
default=random.choice(example_prompts),
)
url_safe_topic = topic.lower().replace(" ", "-")
generate_blog_post = BlogPostGenerator(
session_id=f"generate-blog-post-on-{url_safe_topic}",
storage=SqliteStorage(
table_name="generate_blog_post_workflows",
db_file="tmp/agno_workflows.db",
),
debug_mode=True,
)
blog_post: Iterator[RunResponse] = generate_blog_post.run(
topic=topic,
use_search_cache=True,
use_scrape_cache=True,
use_cached_report=True,
)
pprint_run_response(blog_post, markdown=True)